41
ITU-T Recommendation Q.816 Amend. 1
DRAFT
- 41 -

ITU - Telecommunication Standardization Sector
Temporary Document 84 (GEN)
STUDY GROUP 4
Geneva, 15 – 19 January 2001

Question(s):
17/4, 18/4

SOURCE*:
Editors

TITLE:
Draft Rec. “CORBA-Based TMN Services Extensions to Support Coarse-Grained Interfaces.”

ABSTRACT

This document defines extensions to the set of TMN CORBA Services required to support coarse-grained interfaces. It specifies how CORBA Common Object Services are used to support coarse-grained interfaces, and extensions to the TMN-specific support services defined in Q.816. A CORBA IDL module defining the interfaces to the new TMN-specific support services is provided. See Section 1.6 for a list of the updates made to this document.

Comments are requested on whether this should be progressed as:

1. An amendment with clauses to be inserted in the body of the original Recommendation

2. An amendment with a new annex to be added to the original Recommendation.

3. A new Recommendation.

	INTERNATIONAL TELECOMMUNICATION UNION
	

	TELECOMMUNICATION
STANDARDIZATION SECTOR

STUDY PERIOD 2001 - 2004
	COM 4-xxx-E
August 2001
Original: English

[image: image1.wmf]
Question: 19/4

STUDY GROUP 4 – CONTRIBUTION xxx

SOURCE*:
EDITORs

TITLE:
DRAFT NEW RECOMMENDATION Q.816 Amendment 1: CORBA Based TMN Service Extensions to Support Coarse-Grained Interfaces

Summary

This document defines extensions to the set of TMN CORBA Services required to support coarse-grained interfaces. It specifies how CORBA Common Object Services are used to support coarse-grained interfaces, and extensions to the TMN-specific support services defined in Q.816. A CORBA IDL module defining the interfaces to the new TMN-specific support services is provided.

Source

ITU-T Recommendation Q.816 Amendment 1 was developed by ITU-T Study Group 4 (2001-2004) and was approved under the WTSC Resolution 1 procedure on the xx of xx, 2001.

Keywords

Common Object Request Broker Architecture (CORBA), Coarse-grained, Interface Definition Language (IDL), CORBA Services, Distributed Processing, TMN Interfaces, Managed Objects

Attention: This is not an ITU publication made available to the public, but an internal ITU Document intended only for use by the Member States of the ITU and by its Sector Members and their respective staff and collaborators in their ITU related work. It shall not be made available to, and used by, any other persons or entities without the prior written consent of the ITU.

Foreword

ITU (International Telecommunication Union) is the United Nations Specialized Agency in the field of telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of the ITU. The ITU-T is responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Conference (WTSC), which meets every four years, establishes the topics for study by the ITU‑T Study Groups which, in their turn, produce Recommendations on these topics.

The approval of Recommendations by the Members of the ITU‑T is covered by the procedure laid down in WTSC Resolution No. 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a telecommunication administration and a recognized operating agency.

INTELLECTUAL PROPERTY RIGHTS
The ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve the use of a claimed Intellectual Property Right. The ITU takes no position concerning the evidence, validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of the Recommendation development process.

As of the date of approval of this Recommendation, the ITU had/had not received notice of intellectual property, protected by patents, which may be required to implement this Recommendation. However, implementors are cautioned that this may not represent the latest information and are therefore strongly urged to consult the TSB patent database.

 ITU 2001

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the ITU.

Table of Contents
5Foreword

Table Of Contents
7
Table Of Figures
9
Table Of Tables
9
1
Scope
11
1.1
Purpose
11
1.2
Application
12
1.3
Document Roadmap
12
1.4
Document Conventions
13
1.5
Compiling the IDL
13
1.6
Updates
14
2
References
14
2.1
Normative References
14
2.2
Additional References
15
3
Definitions
16
4
Coarse-grained Interface Issues
17
4.1
Reduced Number of IORs
18
4.2
Ability to Derive IORs
18
4.3
Application of Framework Services
18
4.4
Distinguishing Between the Two Types of Objects
19
4.5
Coarse-grained Object Creation and Deletion
19
4.6
Hierarchical Naming
19
4.7
Attributes
19
4.8
Migration of Modelled Entities across Approaches
19
4.9
Migration of Modelled Entities across Technologies
19
4.10
Notifications
19
4.11
Single Operation Multiple Entity Information Retrieval
19
4.12
Equivalent Distinguished Names
19
4.13
Coarse-grained Access to All Managed Resources
20
4.14
Exceptions
20
4.15
Support for All Operations
20
4.16
Prescriptive Mapping
20
4.17
Others
20
5
Framework and Requirements Overview
20
5.1
Framework Overview
20
5.2
Coarse-grained Extensions Overview
22
6
Framework Common Object Services Usage Requirements for Supporting Coarse-grained Interfaces
23
6.1
The Naming Service
23
6.1.1
Naming Service Use on Coarse-grained Interfaces
23
6.1.2
Façade Interface Names
24
6.1.3
Light Object Names
24
6.2
Notification Service
24
6.3
Telecom Log Service
24
6.4
Messaging Service
24
6.5
Security Service
24
6.6
Transaction Service
25
7
Framework Support Services Requirements for Supporting Coarse-grained Interfaces
25
7.1
The Factory Finder Service
25
7.2
The Channel Finder Service
26
7.3
The Terminator Service
26
7.4
The Multiple-Object Operation Service
27
7.5
Heartbeat Service
29
7.6
Containment Service
29
7.6.1
Containment Service Rationale
30
7.6.2
Containment Service Description
30
8
Compliance and Conformance
34
8.1
System Conformance
34
8.1.1
Conformance Points
34
8.1.2
Basic Conformance Profile
35
8.2
Conformance Statement Guidelines
36
Annex A Framework Support Services IDL
37
// IMPORTED TYPES
37
// INTERFACES
37
Appendix A
Fine-grained and Coarse-grained Object Co-existence
41
A.1
Introduction
41

Table of Figures

21Figure 1.
Overview of Framework

Table of Tables

Error! No table of figures entries found.
Recommendation Q.816 Amendment 1

CORBA-Based TMN Service Extensions to Support Coarse-Grained Interfaces

(2001)

1 Scope

The TMN architecture defined in Recommendation M.3010 – 2000 introduces concepts from distributed processing and includes the use of multiple management protocols. Recommendations Q.816 and X.780 subsequently define within this architecture a framework for applying the Common Object Request Broker Architecture (CORBA) as one of the TMN management protocols.

This Amendment, along with Recommendation X.780 Amendment 1, adds specifications to the framework to enable it to support a slightly different style of interaction between managing systems and managed systems than that specified in the original framework documents. This style of interaction has certain benefits, the main one being that it relieves a managing system from having to retrieve an object-oriented software address for each manageable resource it wishes to access. These software addresses could number in the millions on large systems. It also changes somewhat the way software is structured on the managed systems, which some managed system suppliers may prefer.

The scope of this Recommendation is the same as the original TMN CORBA framework. The framework and these extensions cover all interfaces in the TMN where CORBA may be used. It is expected, however, that not all capabilities and services defined here are required in all TMN interfaces. This implies that the framework can be used for interfaces between management systems at all levels of abstractions (inter and intra-administration) as well as between management systems and network elements.

1.1 Purpose

While the ITU-T was defining the TMN CORBA framework in Q.816 and X.780, several other groups were also beginning to develop network management specifications that used CORBA. Still more will be beginning soon. Many of these groups would like to use the ITU-T’s standard TMN CORBA framework, but prefer the style of interaction between managing systems and managed systems that was not initially supported in the framework. The purpose of this standard it to extend the framework to meet the needs of these groups. Thus, this Recommendation is intended for use by various groups specifying network management interfaces.

1.2 Application

The approach taken in the CORBA TMN framework Recommendations is to model manageable network resources as software objects accessible using CORBA. Information models written in the CORBA Interface Definition Language (IDL) describe the object interfaces.

CORBA provides location-transparency, enabling one software object to interact with another regardless of its location. A software object is accessed using what CORBA refers to as an Interoperable Object Reference (IOR).

The original CORBA TMN framework models each manageable resource as an independent CORBA object, each with its own unique IOR. This approach flexibly allows each object to reside anywhere. It does, however, require that managing systems have on hand an IOR for each object they wish to access. This is a burden that many companies and administrations in the telecommunications industry have sought to avoid. It also could require a managed system to support large numbers of IORs, which some managed system suppliers would like to avoid. This Recommendation, along with Recommendation X.780 Amendment 1, defines how the TMN CORBA framework is to be extended to avoid the need for large numbers of IORs.

CORBA-based interfaces using the approach where each manageable resource is addressable with a unique IOR have become known as “fine-grained” interfaces. Alternatively, those where an IOR is not assigned to each manageable resource are known as “coarse-grained” interfaces.

Because X.780 Amendment 1 defines a slightly different approach to modeling manageable resources on coarse-grained interfaces, interface model specifications such as those found in Recommendation M.3120 will be slightly different for the fine-grained and coarse-grained approaches.

1.3 Document Roadmap

This document has the following structure:

Section 1.
Introduction, document roadmap, and updates.

Section 2.
References.

Section 3.
Definitions of terms and abbreviations used throughout the rest of the document.

Section 4.
Issues that must be addressed as support for coarse-grained interfaces is added to the framework.

Section 5.
TMN CORBA framework and coarse-grained requirements overview.

Section 6.
Requirements on the use of CORBA Common Object Services to support coarse-grained network management interfaces.

Section 7.
Requirements on the use of TMN-specific object services to support coarse-grained network management interfaces. The original framework defined some new services that will have to be extended to support coarse-grained interfaces. Also, a new service is required.

Section 8.
Compliance and conformance guidelines.

Annex A.
TMN-specific support service IDL.

Appendix A.
Concurrent support for fine-grained and coarse-grained objects on the same managed system.

1.4 Document Conventions

A few conventions are followed in this document to make the reader aware of the purpose of the text. While most of the document is normative, paragraphs succinctly stating mandatory requirements to be met by a management system (managing and/or managed) are preceded by a boldface “R” enclosed in parentheses, followed by a short name indicating the subject of the requirement, and a number. For example:

(R) EXAMPLE-1
An example mandatory requirement.

Requirements that may be optionally implemented by a management system are preceded by an “O” instead of an “R.” For example:

(O) OPTION-1
An example optional requirement.

The requirement statements are used to create compliance and conformance profiles.

Many examples of CORBA IDL are included in this document, and IDL specifying the TMN specific services, and supporting data types, included in a normative annex. The IDL is written in a 9-point courier typeface:

// Example IDL

interface foo {

void operation1 ();

};

1.5 Compiling the IDL

An advantage of using IDL to specify network management interfaces is that IDL can be “compiled” into programming code by tools that accompany an ORB. This actually automates the development of some of the code necessary to enable network management applications to interoperate. This document has an annex that contains code that implementers will want to extract and compile. Annex A is normative and should be used by developers implementing systems that conform to this standard. The IDL in this document has been checked with two compilers to ensure its correctness. A compiler supporting the CORBA version specified in ITU-T Recommendation Q.816 must be used.

The appendices have been formatted to make it simple to cut and paste them into plain text files that may then be compiled. Below are tips on how to do this.

1. Cutting and pasting seems to work better from the Microsoft® Word® version of this document. Cutting and pasting from the Adobe® Acrobat® file format seems to include page headers and footers, which cannot be compiled.

2. All of Annex A, beginning with the line “/* This IDL code…” through the end should be stored in a file named “itut_q816a1.idl” in a directory where it will be found by the IDL compiler.

3. The headings embedded in the annex need not be removed. They have been encapsulated in IDL comments and will be ignored by the compiler.

4. Comments that begin with the special sequence “/**” are recognized by compilers that convert IDL to HTML. These comments often have special formatting instructions for these compilers. Those that will be working with the IDL may want to generate HTML as the resulting HTML files have links that make for quick navigation through the files.

5. The annex has been formatted with tab spaces at 8-space intervals and hard line feeds that should enable almost any text editor to work with the text.

1.6 Updates

This section describes the updates from the previous version of the document and will be deleted prior to publication of this Recommendation.

2 References

NOTE -- This section was merely copied over from Q.816 and needs to be updated for use in this amendment.

2.1 Normative References

The following ITU-T Recommendations and other references contain provisions which, through reference in this text, constitute provisions of this Recommendation. At the time of publication, the editions indicated were valid. All Recommendations and other references are subject to revision; all users of this Recommendation are therefore encouraged to investigate the possibility of applying the most recent edition of the Recommendations and other references listed below. A list of the currently valid ITU-T Recommendations is regularly published.
[1] ITU-T Recommendation X.780, Guidelines for Defining CORBA Managed Objects.
[2] The Object Management Group (OMG), “The Common Object Request Broker: Architecture and Specification”, OMG Document formal/99-10-07, Revision 2.3.1, October, 1999.

[3] The Object Management Group (OMG), “Naming Service Specification”, OMG Document formal/2000-06-19, Version 1.0, April, 2000.

[4] The Object Management Group (OMG), “Notification Service Specification”, OMG Document formal/2000-06-20, Version 1.0, June, 2000.

[5] The Object Management Group (OMG), “Telecom Log Service Specification”, OMG Document formal/00-01-04, Version 1.0, January, 2000.

[6] The Object Management Group (OMG), “Security Services Specification”, OMG Document formal/2000-06-25, Version 1.5, May, 2000.

[7] The Object Management Group (OMG), “Transaction Service Specification”, OMG Document formal/2000-06-28, Version 1.1, May, 2000.

[8] The Object Management Group (OMG), “CORBA Messaging,” OMG TC Document orbos/98-05-05, May, 1998.

[9] The Object Management Group (OMG), “JIDM Interaction Translation,” Edition 4.31, OMG Document telecom/98-10-10, October 1998.

[10] Internet Engineering Task Force (IETF), “The TLS Protocol Version 1.0,” RFC 2246, Version 1.0, January, 1999.

[11] The Institute of Electrical and Electronics Engineers (IEEE), “Information Technology – Portable Operating System Interface (POSIX) Part 2: Shell and Utilities,” IEEE/ANSI Standard 1003.2-1992, 1992.

2.2 Additional References

The following standards contain information that was used in the development of this framework. As stated in the introduction, a primary design goal of this framework is to enable the re-use of existing network management information models, at least without significant semantic changes. These documents provide many of the details on the ITU-T’s CMIP framework, and therefore define some of the functionality the CORBA framework must support.

[12] ITU-T Recommendation X.703 (1997), Information Technology – Open Distributed Management Architecture, October, 1997.

[13] ITU-T Recommendation X.710 (1997), Common Management Service Definition for ITU-T Applications, October, 1997.

[14] ITU-T Recommendation X.711 (1997), Common Management Information Protocol Specification for ITU-T Applications, October, 1997.

[15] CCITT Recommendation X.720 (1992) | ISO/IEC 10165-1 : 1992, Information Technology – Open Systems Interconnections – Structure of Management Information: Management Information Model.

[16] CCITT Recommendation X.721 (1992) | ISO/IEC 10165-2 : 1992, Information Technology – Open Systems Interconnections – Structure of Management Information: Definition of Management Information.

[17] CCITT Recommendation X.722 (1992) | ISO/IEC 10165-4 : 1992, Information Technology – Open Systems Interconnections – Structure of Management Information: Guidelines for the Definitions of Managed Objects.

[18] ITU-T Recommendation X.711 Cor. 2, Corrigendum 2 to ITU-T Recommendation X.711, January, 2000.

[19] ITU-T Recommendation X.720 Cor. 1, Corrigendum 1 to CCITT Recommendation X.720, February, 1994.

[20] ITU-T Recommendation X.721 Cor. 1, Corrigendum 1 to CCITT Recommendation X.721, February, 1994.

[21] ITU-T Recommendation X.721 Cor. 2, Corrigendum 2 to CCITT Recommendation X.721, October, 1996.

[22] ITU-T Recommendation X.721 Am. 1, Amendment 1 to CCITT Recommendation X.721, November, 1995.

[23] ITU-T Recommendation X.722 Cor. 1, Corrigendum 1 to CCITT Recommendation X.722, October, 1996.

[24] ITU-T Recommendation X.722 Cor. 2, Corrigendum 2 to CCITT Recommendation X.722, January, 2000.

[25] ITU-T Recommendation X.722 Am. 1, Amendment 1 to CCITT Recommendation X.722, November, 1995.

[26] ITU-T Recommendation X.722 Am. 2, Amendment 2 to CCITT Recommendation X.722, August, 1997.

[27] ITU-T Recommendation X.722 Am. 3, Amendment 3 to CCITT Recommendation X.722, August, 1997.

[28] CCITT Recommendation X.733 (1992) | ISO/IEC 10164-4 : 1992, Information Technology – Open Systems Interconnection – Systems Management: Alarm Reporting Function.
[29] ITU-T Recommendation M.3010 (2000), Principles for a Telecommunications management network, February, 2000.

[30] ITU-T Recommendation M.3120, CORBA-Based Generic Network Information Model.
[31] ITU-T Recommendation Q.821 (2000), Stage 2 and Stage 3 description for the Q3 interface - Alarm Surveillance,(to be published).
3 Definitions

NOTE -- This section was merely copied over from Q.816 and needs to be updated for use in this amendment.

This section provides definitions for acronyms used throughout the rest of the document.

AMI
Asynchronous Messaging Invocation.

API
Application Programming Interface.

ASN.1
Abstract Syntax Notation #1.

ATM
Asynchronous Transfer Mode.

AVA
Attribute Value Assertion.

CMIP
Common Management Information Protocol.

CORBA
Common Object Request Broker Architecture.

COS
Common Object Services.

DN
Distinguished Name.

EMS
Element Management System.

FIFO
First In, First Out.

GDMO
Guidelines for the Definition of Managed Objects.

GIOP
General Interoperability Protocol.

HTML
Hypertext Markup Language.

ID
Identifier.

IDL
Interface Definition Language.

IEEE
The Institute of Electrical and Electronics Engineers.

IETF
The Internet Engineering Task Force.

IIOP
Internet Interoperability Protocol.

IOR
Interoperable Object Reference.

ITU-T
International Telecommunication Union – Telecom.

JIDM
Joint Inter-Domain Management.

MO
Managed Object.

MOO
Multiple Object Operation.

NE
Network Element.

NMS
Network Management System.

OAM&P
Operations, Administration, Maintenance, and Provisioning.

ORB
Object Request Broker.

OID
Object Identifier.

OMG
Object Management Group.

OSI
Open Systems Interconnection.

PDU
Protocol Data Unit.

POA
Portable Object Adapter.

POSIX
Portable Operating System Interface.

POP
Point of Presence.

PM
Performance Management.

QoS
Quality of Service.

RDN
Relative Distinguished Name.

SDH.
Synchronous Digital Hierarchy.

SONET
Synchronous Optical Network.

SSL
Secure Socket Layer.

TII
Time-Independent Invocation.

TLS
Transport Layer Security.

TMN
Telecommunications Management Network.

TTP
Trail Termination Point.

UID
Universal Identifier.

UML
Unified Modeling Language.

UTC
Universal Time Code.

4 Coarse-grained Interface Issues

This section identifies several issues that must be addressed by the framework as support for coarse-grained interfaces is added.

4.1 Reduced Number of IORs

As support for coarse-grained interfaces is added to the framework, the framework must enable the number of managed resources (like termination points) to grow without increasing the number of IORs exposed across the management interface.

4.2 Ability to Derive IORs

A lot of the early debate over the merits of coarse-grained interfaces focused on the need to reduce the number of IORs supported by a managed system. This was because throughout most of the 1990s Object Request Brokers (ORBs) offered system developers no standard way to persistently store the state of an object between method invocations. Thus, all objects with outstanding IORs had to be kept in memory, which limited the number of IORs a system could support. The OMG remedied this with the CORBA 2.2 specification, however, and most ORBs now support the OMG's Portable Object Adapter (POA) standard, which enables systems to persistently store object state between method invocations. Thus, the number of objects a managed system can now support is basically limited only by the number of objects it can store in its disk space.

This, however, does not negate all the benefits of coarse-grained interfaces. The benefactor, it turns out, will be mainly the managing system. When a managing system uses a fine-grained CORBA interface, in order to interact with each managed resource it must at some time retrieve the IOR for each managed resource. In a system with millions of managed resources, this amounts to millions of IORs. Managing systems will probably implement a range of strategies for dealing with large numbers of IORs. The simplest will be to just resolve a managed resource's name to its IOR before each interaction, but this is slow and wasteful of data communications network resources. An alternative will be to retrieve all names and their paired IORs once, and store them on the managing system. Another strategy will be to cache names and IORs on the managing system, keeping the most recently used IORs on hand for quick reference while discarding those not used for some time to be retrieved from the managed system when needed again. Other strategies could also emerge.

Coarse-grained interfaces have the potential to relieve managing systems from having to implement such schemes. Coarse-grained interfaces could enable a managing system to initially retrieve and store just a small number of IORs from a managed system. To make this work, though, a managing system must subsequently be able to tell from just a managed resource's name which of the previously-retrieved IORs to use to interact with that resource. That is, given a name, a managing system must be able to derive the IOR of the interface for that specific managed resource. If instead the managing system has to query the managed system with the name in order to discover the corresponding IOR, then the managing system is back to implementing the schemes described above and the benefit of adding support for coarse-grained interfaces to the framework is largely lost.

4.3 Application of Framework Services

Support for coarse-grained interfaces must be added to the framework in a way that enables the existing framework services (such as the Multiple Object Operation service and Terminator service) to be applied. This does not preclude changes to the implementations of those services to support coarse-grained interfaces.

4.4 Distinguishing Between the Two Types of Objects

It must be possible for a managing system to distinguish between resources managed with fine-grained and coarse-grained interfaces.

4.5 Coarse-grained Object Creation and Deletion

It must be possible to create and delete coarse-grained representations of managed resources. The possibility of including the create operation on the coarse-grained interface should be investigated.

4.6 Hierarchical Naming

Hierarchical (containment-based) naming of resources managed with coarse-grained interfaces must be supported.

4.7 Attributes

The framework must support associating attributes with managed resources accessed through a coarse-grained interface.

4.8 Migration of Modeled Entities across Approaches

The framework must enable implementations that can migrate access to a particular type of managed resource from the coarse-grained approach to the fine-grained approach, or vice versa.

4.9 Migration of Modeled Entities across Technologies

The framework must enable implementations to migrate to various software technologies, such as C++ or JavaBeans.

4.10 Notifications

The framework must support event notifications from managed resources accessed through coarse-grained interfaces.

4.11 Single Operation Multiple Entity Information Retrieval

The framework must support retrieving information from multiple managed resources of the same type with a single strongly-typed operation.

4.12 Equivalent Distinguished Names

The distinguished name of a managed resource must not depend on whether the resource is accessed with a fine-grained or coarse-grained interface. Also, it must be possible to retrieve containment relationship information from a single location regardless of whether the resources on the managed system are accessed with fine-grained or coarse-grained interfaces.

4.13 Coarse-grained Access to All Managed Resources

The framework must enable and require implementations to allow managing systems to access all managed resources through coarse-grained interfaces.

4.14 Exceptions

Coarse-grained interfaces shall enable managed resources to raise an exception on the invocation of an operation. These exceptions must be explicitly clarified for each operation.

4.15 Support for All Operations

A coarse-grained interface shall support all of the operations applicable to a managed resource.

4.16 Prescriptive Mapping

The mapping between fine-grained information models and coarse-grained information models shall be prescriptive. The same optimizations should be performed in both definitions. The mapping can be performed algorithmically.

4.17 Retrieval of Attributes from Multiple Objects

There is a need to retrieve attributes of multiple light object instances of the same type in a single operation. Since all of these objects would be accessed using the same façade, this can be accomplished with a single operation carried out by the façade.

4.18 Others

Editors' Note -- These requirements from the original contribution were not understood.

Meta requirements – introduction of new services that may delay any implementation of the framework forever; introducing new services using the coarse grained approach should not force all applications to support these services;

5 Framework and Requirements Overview

The previous section outlined the issues that must be resolved as support for coarse-grained interfaces is added the framework. This section and the rest of the document provide the details on how the framework will be extended to address these issues. Recommendation X.780 describes the aspects of the framework related to information modeling, so an Amendment to that document describes how coarse-grained interfaces will be modeled. First, a brief overview of the current framework is presented then an overview of the extensions.

5.1 Framework Overview

The framework for CORBA-based TMN interfaces is a collection of capabilities. A central piece of the framework is a set of CORBA Common Object Services. The framework defines their role in network management interfaces, and defines conventions for their use. The framework also defines support services that have not been standardized as CORBA Common Object Services, but are expected to be standard on network management interfaces conforming to the framework.

[image: image2.wmf]Superclasses:

Managed

Object

Managed

Object

Factory

Std.

Data

Types

GDMO

to IDL

Con-

ven-

tions

Managed

Element

Connection

Network

Link

Inherit

…

Managed

Element

Factory

Link

Factory

Network

Factory

Connection

Factory

…

Application-

specific Objects

Notification

Service

Telecom

Log Service

Notification

Specifications

Terminator

Service

Multiple Object

Operation Service

Naming

Service

Channel

Finder

Factory

Finder

Names

CORBA 2.3 ORB

Heartbeat

Service

Figure 1. Overview of Framework

--Temporary Note: This figure needs be updated to reflect the new interfaces and services.

The framework is depicted graphically in Figure 1 above. The figure shows the framework in gray. In the middle are the application-specific objects that are supported by the framework. Along the bottom is a box representing the CORBA ORB. Above that are a number of boxes with names in them representing the services that compose the framework. (Some also have icons depicting the databases they would have to maintain to perform their functions.) These services, along with ORB version requirements, are defined in Recommendation Q.816. Along the top of the figure are icons representing two superclasses, one for managed objects and one for managed object factories. Each of the managed objects and managed object factories supported by this framework must ultimately inherit from these superclasses, respectively. Also shown on the figure are icons of pages with up-turned corners representing standard object modeling conventions. These are defined in Recommendation X.780.

5.2 Coarse-grained Extensions Overview

This section provides an overview of the extensions to the framework required to support coarse-grained interfaces.

5.2.1 The Façade Design Pattern

The most significant change to the framework required to support coarse-grained interfaces is the way managed objects are accessed. The number of managed objects on a managed system must be able go up while the number of IORs supported by the system does. It is still desirable, though, that access to the managed objects remain strongly-typed. This leads to the use of a design pattern referred to here as the “façade” pattern. A façade can be thought of as a false front, or as a portal. Using the façade design pattern, a managed system will support a small number of façade interfaces, one for each type of managed object on the system. A managing system will then invoke an operation on a managed object by actually invoking the operation on the façade for that type of managed object on that system. In the façade design pattern, the managed objects do not have individual IORs, and hence cannot be directly accessed using CORBA.

When an operation is invoked on a managed object through a façade, the façade must then invoke the operation on the actual managed object or entity. Because many managed objects will be accessed through a single façade, the façade must know which managed object is the actual target of the operation. This will be handled by adopting the convention of including the name of the target managed object as the first parameter of every façade operation directed at a managed object.

While managed objects will no longer have unique IORs, they will still have unique names and can still be thought of as individual entities representing manageable resources. A managed object accessed through a façade will be referred to as a “light” managed object. Alternatively, those accessed directly with an IOR under the original framework approach will be referred to as “heavy” managed objects. (It may help to remember which is which by picturing light objects being light because they lack an IOR, while heavy objects are heavy because they have an IOR.)

5.2.2 Light Object Names

As mentioned above, light managed objects will have unique names, just as heavy managed object do. Also, light object names will be based on containment, just like heavy objects. In fact, light object names will differ only slightly from heavy object names. See Section X for the details on how light object names will differ from heavy managed object names. The similarity in names makes sense, though, because both light and heavy managed objects are managed objects. The only difference between them is the mechanism by which operations are invoked upon them.

5.2.3 Support Services for Light Objects

The framework support services for light objects will be quite similar to those used for heavy objects. Some, such as the Factory Finder and Channel Finder services require no change at all. Others, such as the Terminator and Multiple Object Operation (MOO) services require no changes to their interfaces or the way they are used by managing systems, but may require slight changes to their implementations if they access managed objects using the managed objects’ CORBA interfaces (rather than some implementation-specific method). Section X provides details on the framework support service changes required to support coarse-grained interfaces.

The biggest change to the support services comes in the area of support for naming. The façade interfaces are bound to names in the naming service, much the same way the support service interfaces are. The light object names, however, are not bound to IORs in the CORBA Naming Service like heavy objects are. Instead, a new service is introduced as a place to store light object names and ensure the accuracy of containment relationships. This new service, the Containment Service, is defined in Section X.

5.2.4 Light Object Modeling

To support the façade design pattern, a new managed object interface is introduced. This interface will be known as the Managed Object Façade interface. It plays the same role in coarse-grained interfaces as the Managed Object interface does in fine-grained interfaces. That is, it is the base interface from which all managed object façade interfaces must either directly or indirectly inherit to work with the framework. The Managed Object Façade interface is quite similar to the Managed Object interface used in the original framework. See ITU-T Recommendation X.780 Amendment 1 for the definition of the Managed Object Façade interface, along with other coarse-grained information modeling guidelines.

6 Framework Common Object Services Usage Requirements for Supporting Coarse-grained Interfaces

Recommendation Q.816 describes how the original framework includes several of the OMG's Common Object Services. These are services defined by the OMG for use in generally any CORBA application. The framework defines which of the OMGs Common Object Service must be supported by a managed system, and conventions on their use. This section provides additional conventions and requirements required to support coarse-grained interface for each of the Common Object Services in the framework.

6.1 The Naming Service

This section describes both how the OMG Naming Service is used on coarse-grained interfaces, and the format of light object names.

6.1.1 Naming Service Use on Coarse-grained Interfaces

The role of the Naming Service is greatly reduced on coarse-grained interfaces. On fine-grained interfaces, managed object names are based on their containment relationships, and the names and IORs of each object are stored in the Naming Service. On coarse-grained interfaces, the names of the light managed objects continue to be based on their containment relationships, but the names are not stored in the Naming Service.

The concept of local root naming contexts still applies. Recall that a local root naming context contains name bindings for one or more objects that each form the root of a tree of managed objects related by containment. A local root naming context itself has a unique name, and all the objects under it are named relative to it. A local root naming context also contains bindings for the framework services supporting the managed objects named relative to that local root.

Name bindings for the light objects don't go in the Naming Service, but bindings for the façade interfaces do. Façade interfaces do have IORs, and there is a relatively small number of them, so name bindings for them are simply placed in the local root naming context along with the bindings for the support services. The format of their names is discussed below.

The result of these rules is that, on a managed system with only coarse-grained object interfaces, the Naming Service will contain only local root naming contexts. Since many systems will have only a single local root naming context, those systems will have only a single Naming Service naming context object. This context object will just contain name bindings for the support services implemented by the system and the managed object façade interfaces implemented by the system.

6.1.2 Façade Interface Names

6.1.3 Light Object Names

6.2 Notification Service

No additional requirements are placed on the use of the Notification Service to support coarse-grained interfaces. Light objects will have names, and these names can be included in notifications to identify the source just as with heavy objects.

6.3 Telecom Log Service

No additional requirements are placed on the use of the Telecom Log Service to support coarse-grained interfaces.

6.4 Messaging Service

No additional requirements are placed on the use of the Messaging Service to support coarse-grained interfaces.

6.5 Security Service

No additional requirements are placed on the use of the Security Service to support coarse-grained interfaces.

-- Note that additional functional may be needed this service, e.g. the new OMG Resource Access Decision service.

6.6 Transaction Service

No additional requirements are placed on the use of the Transaction Service to support coarse-grained interfaces.

7 Framework Support Services Requirements for Supporting Coarse-grained Interfaces

In addition to rules for using OMG Common Object Services, Recommendation Q.816 defines some new support services for use on CORBA TMN interfaces. These services provide common functions specific to network management that are not provided by the general-purpose OMG Common Object Services.

The sections below define the additional requirements these services must meet to support coarse-grained interfaces. Also, one new service is defined to maintain managed resource containment relationships on coarse-grained interfaces. The IDL describing the interface for this new service is provided in Annex A.

7.1 The Factory Finder Service

The Factory Finder Service is a service defined in Q.816 to enable managing systems to find "factories" on managed systems. A managed system creates a new object on a managed system by invoking an operation on a factory, which is itself an object. (This is a commonly-used CORBA design pattern.) A managing system finds a factory by querying this service, provided by the managed system, with the class name of a factory. The service responds with a reference to a factory of that type. The managing system may then invoke the appropriate operation on the factory and create the object. The Factory Finder Service is found by looking it up in the Naming Service. The managed system is required to place a reference to it in the root naming context.

An identical approach is taken for creating light objects on coarse-grained interfaces. Recommendation X.780, Amendment 1 requires that factory object interfaces be defined for each instantiable class of light objects. It also defines a common factory superclass for light object factories.

Because the approach for creating light objects on coarse-grained interfaces is similar to that for heavy objects on fine-grained interfaces, the Factory Finder Service does not need to be modified. For coarse-grained interfaces, the managing system will simply request the factories for light objects instead of the factories for heavy objects. Thus, no additional requirements are placed on the use of the Factory Finder Service to support coarse-grained interfaces.

NOTE -- The Factory Finder find method returns a reference to ManagedObjectFactory. Thus, to avoid changing the service, the light object factory superclass will have to extend this interface. Since the ManagedObjectFactory interface is currently empty, this doesn't pose any immediate problems. If heavy-object-specific operations were to be later added to it, though, they would end up being inherited by the light object factories.
7.2 The Channel Finder Service

The Channel Finder Service is a service defined in Q.816 to enable managing systems to discover the event channels present on a managed system, and which notifications each of them handles. A small managed system might have only a single channel, but a more complex system might have multiple channels, perhaps for different sets of managed resources or differ types of notifications. The Channel Finder Service does not enable a managing system to create new event channels on the managed system, or change which events any of the handles. Individual event channels, however, do allow managing systems to add filters and destinations for the notifications handled by the channel. Thus, the managed system registers information about the configuration of the event channels with the Channel Finder Service, which managing systems can subsequently retrieve and use to decide to which channels to listen. The Channel Finder Service is found by looking it up in the Naming Service. The managed system is required to place a reference to it in the root naming context.

When the Channel Finder reports information about which objects it handles events for, it identifies the objects by name. Since light objects on coarse-grained interfaces will have individual names based on containment just as heavy objects do, the Channel Finder can treat light objects the same as heavy object. The Channel Finder can also identify light objects by class, just as for heavy objects. Therefore, no new requirements are placed on the use of the Channel Finder Service to support coarse-grained interfaces.
7.3 The Terminator Service

Recommendation Q.816 defines the Terminator Service as a common service to implement the functions needed to delete a managed object. Each managed object supported by the framework has a delete policy attribute, set when the object is created. The Terminator Service ensures that this delete policy is followed when the object is deleted. Also, managed objects are named based on containment relationships. It is therefore important that objects that contain other objects only be deleted if the contained objects are also deleted. The Terminator Service does this, and ensures the validity of the containment-based naming tree.

Light objects on a coarse-grained interface will also have containment-based names, and Recommendation X.780 Amendment 1 specifies that each will also have a delete policy, just like heavy objects. So, the Terminator Service will still be needed to play its role on coarse-grained interfaces, and it will do it in pretty much the same way as on fine-grained interfaces. There are, however, some differences on coarse-grained interfaces that will affect how the Terminator Service fulfills it role. First, if the Terminator Service uses the managed objects' CORBA interface to retrieve its delete policy (as opposed to some proprietary means), it will have to do so in the manner prescribed by Recommendation X.780 Amendment 1 for interacting with light objects on a coarse-grained interface. Second, since light objects' names are not stored in the CORBA Naming Service, the Terminator Service will have to retrieve containment information from the Containment Service (See Section X), and maintain the correctness of the naming hierarchy there.

These changes, though, will not require modifications to the IDL interface of the Terminator Service. Q.816 defines this interface with two delete operations, one which takes a managed object name to identify the object, and one which takes a managed object reference (IOR). The operation that takes a managed object reference will not apply on coarse-grained interfaces since light objects do not have individually unique IORs. The operation is defined so that the reference must be of type ManagedObject or a subclass. Façade interfaces do not inherit from this interface, so it will be impossible for a managed system to mistakenly try to use this interface to delete a light object, or even a façade object. The code attempting this would not compile.

A managing system will delete light objects by passing the name of the object to the Terminator Service's deleteByName operation, just as it could for a heavy object. The Terminator Service shall recognize that the name refers to a light object based on information in the name itself. (See Section X.) The Terminator Service shall then determine the façade interface that can be used to access this light object, and retrieve the object's delete policy, passing along the object's name. If the Terminator Service ends up deleting the object, it will do so by invoking the destroy operation on the same façade, again passing along the object's name. This is very similar to heavy objects, except that with heavy objects the Terminator Service uses the object's interface directly, rather than a façade interface.

(R) TERM-1. A managed system shall support all of the Terminator Service requirements stated in Recommendation Q.816.
(R) TERM-2. The Terminator Service shall recognize the differences in names for light and heavy objects, and treat them accordingly.

(R) TERM-3. When deleting a light object and accessing it using its CORBA interface, the Terminator Service shall use the light object's façade interface to retrieve its delete policy and destroy it.

(R) TERM-4. When deleting a light object the Terminator Service shall access containment information stored in the Containment Service. The Terminator Service must also ensure the names in the Containment Service are correct as objects are deleted.

7.4 The Multiple-Object Operation Service

Recommendation Q.816 defines the Multiple Object Operation (MOO) Service as a common service that can be used by a managing system to invoke operations on groups of managed objects with a single (or small number of) method invocations between the managing system and managed system. To use the service, the managing system invokes a single operation on the MOO service resident on the managed system. The operations supported are get, to retrieve one or more values from a group of managed objects, set, to modify one or more values on a group of managed objects, and delete, to delete a group of managed objects. The group of objects to be operated on are identified with a scope and a filter. A scope identifies a base object plus some set of objects contained by that object, based on their names. A filter is a logical statement testing the values of the attributes in the scope of the operation. If the statement evaluates to true for a particular object, the operation is applied to that object. If the operation is applied to many objects, the results may be too large to return in one batch. The MOO service uses the iterator design pattern to enable the managing system to retrieve the results in manageable batch sizes.

Section X describes how light objects on coarse-grained interfaces will have containment-based names, and Recommendation X.780 Amendment 1 describes how light objects will have attributes. X.780 also defines a common façade operation that will enable a managing system to retrieve attribute values from multiple objects accessed through that façade by supplying a list of the objects' names on a "bulk get" operation. This "bulk get" operation, however, does not supply the flexibility and power of the MOO Service operations. It is therefore desirable that the MOO service also be applicable to coarse-grained interfaces.

There are, however, some differences on coarse-grained interfaces that will affect how the MOO Service fulfills it role. First, since light objects' names are not stored in the CORBA Naming Service, the MOO Service will have to retrieve containment information from the Containment Service (See Section X). Second, if the MOO Service uses the managed objects' CORBA interface (as opposed to some proprietary means) to retrieve attribute values for filtering and to invoke the actual operation, it will have to do so in the manner prescribed by Recommendation X.780 Amendment 1 for interacting with light objects on a coarse-grained interface.

These changes, though, will not require modifications to the IDL interface of the MOO Service or its iterators. Q.816 defines the MOO Service interface with three operations, get, set, and delete. Each of these takes the name of the base object, a scope indicator, and a filter statement. If attributes are to be acted upon, they are identified by name. All of these are the same on coarse-grained interfaces as they are on fine-grained interfaces. What changes with coarse-grained interfaces is where containment information is located, and how managed object attributes are accessed.

Containment information is located in the Containment Service instead of the Naming Service, and to access a light object's attributes the MOO service will have to determine the light object's façade interface and invoke the operation there, supplying the light object's name. Using the Containment Service to retrieve containment information may actually be simpler on coarse-grained interfaces since the Containment Service accepts a base object name and scope. The MOO service can simply pass to the Containment Service the base object name and scope supplied to it, then iterate through the contained objects to see if they pass the filter. It does not have to navigate the Naming Service.

Accessing light object attributes through a façade is not too different from accessing attributes on heavy objects. Given a name, the correct façade is determined by matching the kind of object (supplied in the kind field of the last name component) with a façade registered in the root naming context. The operation is then applied to the façade, with the name of the light object supplied as the first parameter on the operation.

(R) MOO-1. A managed system shall support all of the MOO Service requirements stated in Recommendation Q.816.
(R) MOO-2. The MOO Service shall recognize the differences in names for light and heavy objects, and treat them accordingly. This applies not only to base object names, but to the names of the contained objects as well.

(R) MOO-3. When accessing a light object using its CORBA interface, the MOO Service shall use the light object's façade interface.

(R) MOO-4. The MOO Service shall determine the objects within the scope of an operation by accessing containment information stored in the Containment Service.

7.5 Heartbeat Service

Because CORBA provides location-transparency, network management applications lose visibility of the connections to specific systems. This makes the applications easier to develop, but could prevent a managing system from knowing when communications with a managed system is lost. To work around this, Recommendation Q.816 defines the Heartbeat Service. This service enables a managing system to configure a managed system to periodically a short notification. The notification goes through each of the event channels on a managed system, so in addition to testing the communications link it also tests the operation of the notification event channels. A managing system can be alerted of problems if it does not receive a heartbeat notification from a managed system when it is supposed to.

Coarse-grained interfaces will use event channels in the same capacity as fine-grained interfaces. The Heartbeat Service can continue to be used to verify the operation of these channels and the data communications network connecting the managed system with its managing systems. No additional requirements are placed on the use of the Heartbeat Service to support coarse-grained interfaces.
7.6 Containment Service

Containment relationships between heavy managed objects are represented by the names stored in the OMG Naming Service. A similar capability is required for light objects. That is, a function is needed to be able to report which objects are contained by a superior object, to verify that a superior object exists before a subordinate is created, to make sure two objects with the same name are not created, etc. The framework will be extended to support this function by adding a new service, the Containment Service.

(R) CONTAINMENT-1. A managed system shall instantiate at least one Containment Service object. Also, each local root naming context on a system shall have at least one name binding for a Containment Service object. The value of the ID string in this binding shall simply identify the server, perhaps with a value similar to “Containment1”. The kind string in the binding shall identify the class of the object (“itut_q816a1::ContainmentService”).

7.6.1 Containment Service Rationale

There are many different places where light object names could be stored: the Naming Service, the façade objects, an existing service such as the Terminator Service or MOO service, or a new service.

Putting the names in the Naming Service does not really make sense because the true purpose of the Naming Service is to bind names to IORs, and light objects do not have their own IORs. All of the light objects accessed through one façade each share the same IOR, so all of their names would be bound to the same IOR in the naming service. The result would likely be large numbers of copies of just a few IORs stored in the naming service.

Putting the names in the façade objects is a logical choice, but one purpose of the framework is to provide places to implement common functions. Duplicating the management of containment information in every façade runs counter to this.

The Terminator Service and MOO Service both rely upon containment information to perform their tasks, so one possibility is to extend these services to manage containment information. These services, however, do not have the management of containment data as their primary duty. Placing the management of containment information elsewhere enables these services to continue to focus on their intended tasks.

While adding a new service is a significant change to the framework, it does seem to be the best choice. It provides a single repository for containment information, and provides an opportunity to introduce features for accessing containment information that are not supported by the Naming Service, such as using scope to query for contained objects.

7.6.2 Containment Service Description

The main function to be supported by the containment service is to enable a managing system to query a managed system with the name of an object, and receive back the names of the objects contained by that object. In addition, a means of getting names added to and removed from the service will be defined. These are not for use by managing systems, but internally by managed objects, factories, and other parts of a managed system. They are provided to promote the development of reusable components, possibly by third parties, and are defined on an interface separate from that used by managing systems. Finally, a potentially large number of names may be returned in response to a query, so the iterator design pattern is used. The iterator is described in a sub-section below.

7.6.2.1 The Containment Service Interface

The Containment Service provides three operations to retrieve containment information. The IDL describing the Containment Service interface (without comments) is provided below.

interface Containment {

boolean exists (in NameType name)

raises (ApplicationError);

NameSetType getContained (in NameType base,

in ScopeType scope,

in unsigned short howMany,

out NameIterator iterator)

raises (ApplicationError);

NameSetType getContainedByKind (in NameType base,

in ScopeType scope,

in KindType kind,

in unsigned short howMany,

out NameIterator iterator)

raises (ApplicationError);

};
// end of Containment interface

The exists operation takes a name and returns true if it is registered with the Containment Service. The other two operations return the names of objects contained by the object named in the base parameter. The scope parameter on both of these operations can be used to specify which part of the tree of objects contained below the base object is to be retrieved. The third operation, getContainedByKind, takes a kind parameter to instruct the Containment Service to return the names for objects of a certain kind.

(R) CONTAINMENT-2. The interface supported by the Contanment Service object(s) shall be the Containment interface described above and defined in the CORBA IDL in Annex A.

(R) CONTAINMENT-3. In response to an invocation of the exists operation, the Containment Service shall return true if the name is currently registered with the service, and false otherwise. If some error on the server prevents this determination, an appropriate application error exception shall be raised.
(R) CONTAINMENT-4. In response to an invocation of the getContained operation, the Containment Service shall return a list of the names of the objects contained by the object named in the base parameter. The list of contained objects shall be determined according to the scope parameter. (See Recommendation Q.816 for a description of scope information.) The maximum number of names to be returned in the result set shall be the value of the howMany parameter. If more than howMany names need to be returned, the Containment Service shall return a reference to a name iterator, and make the additional name available through this interface. If all the names can be returned in the result set, the name iterator reference shall be null. If some error prevents the list from being returned, an appropriate application error exception shall be raised.

(R) CONTAINMENT-5. The Containment Service shall respond to the invocation of the getContainedByKind operation as described in requirement CONTAINMENT-4, except only those names that match the kind parameter are returned. Recall that the final component of a name has an ID of "Light" (if it is a light object) or "Object" (if it is a heavy object). It is the second-to-last component that the ID contains the relative distinguished name for the object and the kind field contains the object's kind value. Thus, in response to an invocation of the getContainedByKind operation, the Containment Service shall return only those names where the kind field in the second-to-last name component matches the value of the kind parameter.
7.6.2.2 The Containment Service Component Interface

A few more operations are defined on a separate interface for use internally to the managed system. These are defined to promote the development of reusable Containment Service components, possibly by third parties. The IDL describing the Containment Service component interface (without comments) is provided below.

interface ContainmentComponent : Containment {

void registerLocalRoot (in NameType name,

in NamingContext localRoot)

raises (ApplicationError);

void unRegisterLocalRoot (in NameType name)

raises (ApplicationError, DeleteError);

void addName (in NameType name)

raises (ApplicationError, CreateError);

void removeName (in NameType name)

raises (ApplicationError, DeleteError);

};

The first two operation are used to register and un-register local root naming contexts with the containment service. When a name is added to the Containment Service, the name of its superior object must already be registered, or the attempt to add the name will fail. At the top of the naming tree, however, will be objects with no superior object on the managed system. These objects will be named relative to a local root naming context. Without knowing what the names of the local root naming contexts are, the Containment Service can not know if a new name, with an unrecognized superior object, is incorrect or an object at the top of a naming tree.

The final two operations are used to add and remove names to and from the Containment Service. The most likely clients of these operations will be, respectively, managed object factories and the Terminator Service. When a name is added, it is checked to make sure it is unique and that the superior object's name has been added (unless it is named directly relative to a root naming context). A name is only removed if there are no subordinate names still registered.

(O) CONTAINMENT-6. The interface supported by the Contanment Service object(s) may be the Containment component interface described above and defined in the CORBA IDL in Annex A.

(O) CONTAINMENT-7. When a local root naming context is registered using the registerLocalRoot operation, the Containment Service shall add it to its list of registered local root naming contexts. If an error on the server prevents this, an appropriate application error exception shall be raised.

(O) CONTAINMENT-8. When a local root naming context is un-registered using the unRegisterLocalRoot operation, the Containment Service shall remove it from its list of registered local root naming contexts, but only if there are no subordinate object names registered. If an error on the server prevents this, an appropriate application error exception shall be raised.

(O) CONTAINMENT-9. When a managed object name is added using the addName operation, the Containment Service shall add the name to its list of registered object names, but only if the name is unique and the name is directly subordinate to either a registered local root or another registered name. If the name is not unique or if no registered superior name exists, the Containment Service shall not add the name and instead raise the appropriate create error exception. Note that if two names are the same except for difference in the final name component (where ID is either "Light" or "Object") these names are not unique. If an error on the server prevents the operation from completing, an appropriate application error exception shall be raised.

(O) CONTAINMENT-10. When a managed object name is removed using the removeName operation, the Containment Service shall remove the name from its list of registered object names, but only if there are no subordinate names registered. If one or more subordinate names exist, the Containment Service shall not remove the name and instead raise the appropriate delete error exception. If an error on the server prevents the operation from completing, an appropriate application error exception shall be raised.

7.6.2.3 The Name Iterator

When the Containment Service returns a list of contained object names, there may be too many to return at once. To enable the Containment Service to return a virtually unlimited number of names, the iterator design pattern is used. As described above, if the Containment Service cannot return a list of names in response to an operation, it returns the most it can, and a non-null reference to an iterator interface. The IDL description of the name iterator interface is shown below.

interface NameIterator {

boolean getNext(in unsigned short howMany,

out NameSetType results)

raises (ApplicationError);

void destroy();

}; // end of interface NameIterator

(R) CONTAINMENT-11. The Containment Service shall support the use of name iterators with interfaces matching the description above and the definition in the IDL in Annex A.
(R) CONTAINMENT-12. Each time a client invokes a getNext operation on a name iterator, the iterator shall return the next set of results. The iterator shall keep track of how many results have already been retrieved by the client, and return all of the results once. The results initially returned in response to an operation on the Containment Service interface shall not be returned again by the iterator. The iterator shall return in response to a getNext operation at most the number of names indicated by the value of the howMany parameter. The iterator may return less than the requested batch size, balancing the efficiency of returning results in a large batch with the possible need to block until more results are available. If there are more results to return (in addition to those being returned), the return value of the getNext operation shall be true, otherwise false. The iterator shall not return an empty result set unless there are no more results to return, as doing so would force the client to poll the iterator.

(R) CONTAINMENT-13. The managed system shall control the life-cycle of the iterator. A destroy operation, however, is provided if the manager wants to stop retrieving results before reaching the last iteration. Upon invocation of the destroy operation, the iterator shall free any resources it is using and delete itself. Upon returning the last result, the iterator shall destroy itself. The iterator may also be destroyed by the managed system if it is unused for an unreasonably long period of time.

8 Compliance and Conformance

NOTE -- This section was merely copied over from Q.816 and needs to be updated for use in this amendment.

This section defines the criteria that must be met by other standards documents claiming compliance to this framework and the functions that must be implemented by systems claiming conformance to this specification.

8.1 System Conformance

8.1.1 Conformance Points

This section summarizes the individual functions described earlier in this document. These conformance points are then combined in profiles that must be supported by systems claiming conformance to this specification.

1. An implementation claiming conformance to the Naming Service requirements must:

· Support the CORBA Naming Service version specified in Section 5.

· Support all of the Naming Service requirements specified in Section 6.1.

2. An implementation claiming conformance to the Notification Service requirements must:

· Support the CORBA Notification Service version specified in Section 5.

· Support all of the Notification Service requirements specified in Section 6.2.

3. An implementation claiming conformance to the Telecom Logging Service requirements must:

· Support the CORBA Telecom Logging Service version specified in Section 5.

· Support all of the Logging Service requirements specified in Section 0.

4. An implementation claiming conformance to the Security Service requirements must:

· Support the Security Service version specified in Section 5.

· Support all of the Security Service requirements specified in Section 0.

· Support the exchange of authentication certificates as an option left up to the administration.

5. An implementation claiming conformance to the Transaction Service requirements must:

· Support the CORBA Transaction Service version specified in Section 5.

· Support the Transaction Service requirements specified in Section 0.

6. An implementation claiming conformance to the Factory Finder Service must:

· Support the Factory Finder service interface described in Section 7.1 and defined in the CORBA IDL in Annex A.

7. An implementation claiming conformance to the Channel Finder Service must:

· Support the Channel Finder service interface described in Section 7.2 and defined in the CORBA IDL in Annex A.

8. An implementation claiming conformance to the Terminator Service must:

· Support the Terminator Service interface described in Section 7.3 and defined by the CORBA IDL in Annex A.

9. An implementation claiming conformance to the Basic MOO Service must:

· Support the mandatory MOO service requirements described in Section Error! Reference source not found..

10. An implementation claiming conformance to the Advanced MOO Service must:

· Support the mandatory and optional MOO service requirements described in Section Error! Reference source not found..

8.1.2 Basic Conformance Profile

A system claiming conformance to the ITU.Q.816 Basic Profile shall support:

1. The version of CORBA specified in Section 5., or any later release that is backwards-compatible with it.

2. The Naming Service requirements. (See conformance point 1.)

3. The Telecom Logging Service requirements, which includes the Notification Service requirements. (See conformance point 3.)

4. The Security Service requirements. (See conformance point 4.)

5. The Factory Finder Service (See conformance point 5.)

6. The Channel Finder Service (See conformance point 6.)

7. The Terminator Service. (See conformance point 7.)

8. The Basic MOO Service. (See conformance point 8.)

8.2 Conformance Statement Guidelines

The users of this framework must be careful when writing conformance statements. Because IDL modules are being used as name spaces, they may, as allowed by OMG IDL rules, be split across files. Thus, when a module is extended its name won’t change. Instead, a new IDL file will simply be added. Simply stating the name of a module in a conformance statement, therefore, will not suffice to identify a set of IDL interfaces. The conformance statement must identify a document and year of publication to make sure the right version of IDL is identified

Annex A Coarse-grained Framework Support Services IDL

(Normative)

/* This IDL code is intended to be stored in a file named "itut_q816a1.idl"

located in the search path used by IDL compilers on your system. */

#ifndef ITUT_Q816A1_IDL

#define ITUT_Q816A1_IDL

#include <CosNaming.idl>

#include <itut_q816.idl>

#include <itut_x780.idl>

#pragma prefix "itu.int"

module itut_q816a1 {

// IMPORTED TYPES

// Types imported from CosNaming

typedef CosNaming::NamingContext NamingContext;

// Types imported from itut_q816

typedef itut_q816::ScopeType ScopeType;

// Types imported from itut_x780

typedef itut_x780::NameType NameType;

typedef itut_x780::NameSetType NameSetType;

// Exceptions imported from itut_x780 (exceptions can’t be typedeffed)

#define ApplicationError itut_x780::ApplicationError

#define CreateError itut_x780::CreateError

#define DeleteError itut_x780::DeleteError

// INTERFACES

/** The Name Iterator interface is used to retrieve the results from

a Containment interface getContained or getContainedByKind operation

using the iterator design pattern. */

interface NameIterator {

/** This method is used to retrieve the next "howMany" results

in the result set.

@param howMany
The maximum number of items to be returned in

the results. Fewer may be returned if that is

all that is left, or to balance delay

with efficiency.

@param results
The next batch of results.

@return

True if there are more results after those

being returned. If the return value is true

the results set should not be empty, as this

forces the client to poll for results.

Instead the call should block.

*/

boolean getNext(in unsigned short howMany,

out NameSetType results)

raises (ApplicationError);

/** This method is used to destroy the iterator and release its

resources. The iterator, though, is automatically destroyed

after the last results are returned, and may be destroyed if

unused for an unreasonably long period. */

void destroy();

}; // end of interface NameIterator

/** The Containment Service interface is used to retrieve from a

managed system information about the containment relationships between

the managed objects on the system. Containment relationships are

represented through names. An object that is contained by another

object is named relative to it. All managed object names are

registered with the Containment Service. */

interface Containment {

/** This method is used to check to see if a name is registered

with the Containment Service.

@param name
The name to check to see if it is registered

@return

True if the name is registered. All components

of the submitted name match a registered name.

*/

boolean exists (in NameType name)

raises (ApplicationError);

/** This method is used to retrieve the names of the objects

contained under a target object. An object is contained by the

target object if its name begins with all but the last

component of the target object's name. The iterator design

pattern is used to support returning potentially large numbers

of names. If the name does not exist, an application error

exception is raised indicating an invalidParameter (See X.780

for application error exception codes.)

@param name
The name of the object for which the contained

objects are sought.

@param scope
The scope is used to identify what part of

the tree of contained objects to return.

@param howMany
The maximum number of names to return in the

results. If there are more than howMany names,

an iterator must be used to return the rest.

@param iterator
A reference to an iterator to return additional

results. If all results are returned in

response to the call, this shall be null.

@return

The names of the contained objects.

*/

NameSetType getContained (in NameType name,

in ScopeType scope,

in unsigned short howMany,

out NameIterator iterator)

raises (ApplicationError);

/** This method is used to retrieve the names of the objects

contained under a target object that match a specific kind.

An object's kind is the value of the kind field in the

next-to-last component of its name. This field must match

the submitted kind value.

@see getContained

@param name
The name of the object for which the contained

objects are sought.

@param scope
The scope is used to identify what part of

the tree of contained objects to return.

@param kind
The value that must be matched in the kind

field of the next-to-last component in the

names returned.

@param howMany
The maximum number of names to return in the

results. If there are more than howMany names,

an iterator must be used to return the rest.

@param iterator
A reference to an iterator to return additional

results. If all results are returned in

response to the call, this shall be null.

@return

The names of the contained objects.

*/

NameSetType getContainedByKind (in NameType name,

in ScopeType scope,

in KindType kind,

in unsigned short howMany,

out NameIterator iterator)

raises (ApplicationError);

};
// end of interface Containment

/** The Containment Component interface extends the Containment

interface to add functions used internally to a managed system.

*/

interface ContainmentComponent : Containment {

/** This method is used to register a local root naming context

with the containment service. Re-registering a name results in

the newly supplied reference subsequently being used by the

service, if it needs to access the root naming context. */

void registerLocalRoot (in NameType name,

in NamingContext localRoot)

raises (ApplicationError);

/** This method is used to remove a local root naming context

registration. */

void unregisterLocalRoot (in NameType name)

raises (ApplicationError);

/** This method is used to add a name to the Containment

Service. The name must be relative to an existing name or

local root name. This means all but the last two name

components of the submitted name must match all but the last

name component of a registered name. Also, the name must

be unique. This means that all but the last name component

of the submitted name cannot match all but the last name

component of any other registered name. If the name has

no relative superior object registered, the name is not

registered and a create error exception is raised with the

cause set to badName. If the name is not unique, the name

is not registered and a create error exception is raised

with the cause set to duplicateName. (See X.780 for

create error exeption codes.)

@param name
The name to be added.

*/

void addName (in NameType name)

raises (ApplicationError, CreateError);

/** This method is used to remove a name from the Containment

Service. There must be no contained names registered with

the Containment service when a name is removed. This means

there must be no other names beginning with all but the last

name component of the name to be removed. If there are, the

name is not removed and a DeletError exception is raised with

the cause set to containsObjects (see X.780). If the name

does not exist, an application error is raised with the

cause set to invalidParameter (See X.780).

void removeName (in NameType name)

raises (ApplicationError, DeleteError);

};
// end of interface ContainmentComponent

}; // end of module itut_q816a1

#endif // end of #ifndef ITUT_Q816A1_IDL

Appendix A
Fine-grained and Coarse-grained Object Co-existence
A.1
Introduction

This appendix describes how a single managed system may support both fine and coarse-grained object interfaces.

[It would be nice to have the framework simultaneously support light and heavy managed objects. The biggest problem is the location of containment information. For the heavy objects, names are stored in the CORBA Naming Service. For light objects, they are stored in the Containment Service. If light and heavy objects are supported in the same system, it could get very confusing trying to determine the subordinate objects contained by a superior object. Also, heavy objects could contain light objects, but not vice-versa. This is because there would be no naming context for the light objects in the Naming Service. One could perhaps be slipped in, but confusion would likely get out-of-hand.

The alternatives seem to be:

1. Restrict implementations from using the framework to simultaneously support light and heavy objects

2. Use the CORBA Naming Service for light object names. The names of all the objects contained by a façade would be bound to that façade’s IOR.

3. Use the Containment Service for heavy object names, as well as light.

The first is the most limiting, but the most straightforward. The second would likely be objectionable to groups these additions are meant to attract. The third is a reasonable option, but would change the existing framework rather than merely add to it.

Another potential problem for light/heavy coexistence is object references. If a heavy object has an attribute or action that uses an object reference instead of just a name, the object reference could not uniquely identify a light object. Supporting the coexistence of light and heavy objects would probably force the use of names instead of object references in the heavy models as well as the light.]

	*Contact:
	Keith Allen

SBC Technology Resources

USA

Tel: +1 512 372 5741

Fax: +1 512 372 5791

E-mail: kallen@tri.sbc.com
	Lakshmi Raman

Teraburst Technologies

USA

Tel: +1 408 541 1155 x322

Fax: +1 408 541 0439

E-mail: lraman@teraburst.com

M:\SG_DOC\SG4\JAN01\TDs\GEN\84.doc

12/01/01
M:\SG_DOC\SG4\JAN01\TDs\GEN\84.doc

12/01/01

_1040132634.doc

Superclasses:

Managed Object

Managed Object Factory

Std. Data Types

GDMO to IDL

Con-

ven-

tions

Managed Element

Connection

Network

Link

Inherit

…

Managed Element Factory

Link

Factory

Network

Factory

Connection

Factory

…

Application-specific Objects

Notification

Service

Telecom Log Service

Notification Specifications

Terminator

Service

Multiple Object Operation Service

Naming

Service

Channel Finder

Factory Finder

Names

CORBA 2.3 ORB

Heartbeat Service

