29
ITU-T Recommendation X.780 Amend. 1
DRAFT
- 29 -

ITU - Telecommunication Standardization Sector
Temporary Document 86 (GEN)
STUDY GROUP 4
Geneva, 15 – 19 January 2001

Question(s):
17/4, 18/4

SOURCE*:
Editors

TITLE:
Draft Rec. “TMN Guidelines for Defining Coarse-grained CORBA Managed Objects.”

ABSTRACT

This document defines extensions to the set of TMN CORBA managed object modeling guidelines required to support coarse-grained interfaces. It specifies how coarse-grained CORBA TMN interfaces are to be defined. It also provides guidelines on converting fine-grained interfaces to coarse-grained, and vice-versa. A CORBA IDL module defining the base interface types to be extended is provided. See Section 1.6 for a list of the updates made to this document.

Comments are requested on whether this should be progressed as:

1. An amendment with clauses to be inserted in the body of the original Recommendation

2. An amendment with a new annex to be added to the original Recommendation.

3. A new Recommendation.

	INTERNATIONAL TELECOMMUNICATION UNION
	

	TELECOMMUNICATION
STANDARDIZATION SECTOR

STUDY PERIOD 2001 - 2004
	COM 4-xxx-E
August 2001
Original: English

[image: image1.wmf]
Question: 19/4

STUDY GROUP 4 – CONTRIBUTION xxx

SOURCE*:
EDITORs

TITLE:
DRAFT NEW RECOMMENDATION X.780 Amendment 1: TMN Guidelines for Defining Coarse-Grained CORBA Managed Objects

Summary

This document defines extensions to the set of TMN CORBA managed object modeling guidelines required to support coarse-grained interfaces. It specifies how coarse-grained CORBA TMN interfaces are to be defined. It also provides guidelines on converting fine-grained interfaces to coarse-grained, and vice-versa. A CORBA IDL module defining the base interface types to be extended is provided.

Source

ITU-T Recommendation X.780 Amendment 1 was developed by ITU-T Study Group 4 (2001-2004) and was approved under the WTSC Resolution 1 procedure on the xx of xx, 2001.

Keywords

Common Object Request Broker Architecture (CORBA), Interface Definition Language (IDL), Guidelines for the Definition of Managed Objects (GDMO), Distributed Processing, TMN Interfaces, Managed Objects

Attention: This is not an ITU publication made available to the public, but an internal ITU Document intended only for use by the Member States of the ITU and by its Sector Members and their respective staff and collaborators in their ITU related work. It shall not be made available to, and used by, any other persons or entities without the prior written consent of the ITU.

Foreword

ITU (International Telecommunication Union) is the United Nations Specialized Agency in the field of telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of the ITU. The ITU-T is responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Conference (WTSC), which meets every four years, establishes the topics for study by the ITU‑T Study Groups which, in their turn, produce Recommendations on these topics.

The approval of Recommendations by the Members of the ITU‑T is covered by the procedure laid down in WTSC Resolution No. 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a telecommunication administration and a recognized operating agency.

INTELLECTUAL PROPERTY RIGHTS
The ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve the use of a claimed Intellectual Property Right. The ITU takes no position concerning the evidence, validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of the Recommendation development process.

As of the date of approval of this Recommendation, the ITU had/had not received notice of intellectual property, protected by patents, which may be required to implement this Recommendation. However, implementors are cautioned that this may not represent the latest information and are therefore strongly urged to consult the TSB patent database.

 ITU 2001

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the ITU.

Table of Contents
5Foreword

Table of Contents
7
Table of Figures
9
Table of Tables
9
1
Scope
11
1.1
Purpose
11
1.2
Application
12
1.3
Document Roadmap
12
1.4
Document Conventions
13
1.5
Compiling the IDL
13
1.6
Updates
14
2
References
14
2.1
Normative References
14
2.2
Additional References
14
3
Definitions
16
4
Coarse-grained Interface Issues
16
4.1
Reduced Number of IORs
17
4.2
Ability to Derive IORs
17
4.3
Application of Framework Services
17
4.4
Distinguishing Between the Two Types of Objects
18
4.5
Coarse-grained Object Creation and Deletion
18
4.6
Hierarchical Naming
18
4.7
Attributes
18
4.8
Migration of Modeled Entities across Approaches
18
4.9
Migration of Modeled Entities across Technologies
18
4.10
Notifications
18
4.11
Single Operation Multiple Entity Information Retrieval
18
4.12
Equivalent Distinguished Names
18
4.13
Coarse-grained Access to All Managed Resources
19
4.14
Exceptions
19
4.15
Support for All Operations
19
4.16
Prescriptive Mapping
19
4.17
Retrieval of Attributes from Multiple Objects
19
4.18
Others
19
5
Framework and Requirements Overview
19
5.1
Framework Overview
19
5.2
Coarse-grained Extensions Overview
21
5.2.1
The Façade Design Pattern
21
5.2.2
Light Object Names
21
5.2.3
Support Services for Light Objects
21
5.2.4
Light Object Modeling
22
6
Coarse-grained CORBA Modeling Guidelines
22
7
Guidelines for Translating Fine-grained Models to Coarse-Grained
22
8
Compliance and Conformance
23
8.1
Standards Document Compliance
23
8.2
System Conformance
24
8.3
Conformance Statement Guidelines
24
Annex A Coarse-grained Modeling IDL
25
// IMPORTED TYPES
25
// DATA TYPES
25
// ATTRIBUTES GET RESULT ITERATOR INTERFACE
25
// MANAGED OBJECT FACADE
26
// MANAGED OBJECT FACTORY FACADE
29

Table of Figures

20Figure 1.
Overview of Framework

Table of Tables

Error! No table of figures entries found.
Recommendation X.780 Amendment 1

TMN Guidelines for Defining Coarse-grained CORBA Managed Objects

(2001)

1 Scope

The TMN architecture defined in Recommendation M.3010 – 2000 introduces concepts from distributed processing and includes the use of multiple management protocols. Recommendations Q.816 and X.780 subsequently define within this architecture a framework for applying the Common Object Request Broker Architecture (CORBA) as one of the TMN management protocols.

This Amendment, along with Recommendation Q.816 Amendment 1, adds specifications to the framework to enable it to support a slightly different style of interaction between managing systems and managed systems than that specified in the original framework documents. This style of interaction has certain benefits, the main one being that it relieves a managing system from having to retrieve an object-oriented software address for each manageable resource it wishes to access. These software addresses could number in the millions on large systems. It also changes somewhat the way software is structured on the managed systems, which some managed system suppliers may prefer.

The scope of this Recommendation is the same as the original TMN CORBA framework. The framework and these extensions cover all interfaces in the TMN where CORBA may be used. It is expected, however, that not all capabilities and services defined here are required in all TMN interfaces. This implies that the framework can be used for interfaces between management systems at all levels of abstractions (inter and intra-administration) as well as between management systems and network elements.

1.1 Purpose

While the ITU-T was defining the TMN CORBA framework in Q.816 and X.780, several other groups were also beginning to develop network management specifications that used CORBA. Still more will be beginning soon. Many of these groups would like to use the ITU-T’s standard TMN CORBA framework, but prefer the style of interaction between managing systems and managed systems that was not initially supported in the framework. The purpose of this standard it to extend the framework to meet the needs of these groups. Thus, this Recommendation is intended for use by various groups specifying network management interfaces.

1.2 Application

The approach taken in the CORBA TMN framework Recommendations is to model manageable network resources as software objects accessible using CORBA. Information models written in the CORBA Interface Definition Language (IDL) describe the object interfaces.

CORBA provides location-transparency, enabling one software object to interact with another regardless of its location. A software object is accessed using what CORBA refers to as an Interoperable Object Reference (IOR).

The original CORBA TMN framework models each manageable resource as an independent CORBA object, each with its own unique IOR. This approach flexibly allows each object to reside anywhere. It does, however, require that managing systems have on hand an IOR for each object they wish to access. This is a burden that many companies and administrations in the telecommunications industry have sought to avoid. It also could require a managed system to support large numbers of IORs, which some managed system suppliers would like to avoid. This Recommendation, along with Recommendation Q.816 Amendment 1, defines how the TMN CORBA framework is to be extended to avoid the need for large numbers of IORs.

CORBA-based interfaces using the approach where each manageable resource is addressable with a unique IOR have become known as “fine-grained” interfaces. Alternatively, those where an IOR is not assigned to each manageable resource are known as “coarse-grained” interfaces.

Because this recommendation defines a slightly different approach to modeling manageable resources on coarse-grained interfaces, interface model specifications such as those found in Recommendation M.3120 will be slightly different for the fine-grained and coarse-grained approaches.

1.3 Document Roadmap

This document has the following structure:

Section 1.
Introduction, document roadmap, and updates.

Section 2.
References.

Section 3.
Definitions of terms and abbreviations used throughout the rest of the document.

Section 4.
Issues that must be addressed as support for coarse-grained interfaces is added to the framework.

Section 5.
TMN CORBA framework and coarse-grained requirements overview.

Section 6.
Guidelines for defining coarse-grained CORBA interfaces.

Section 7.
Guidelines for translating fine-grained CORBA interface specifications to coarse-grained, and vice-versa.

Section 8.
Compliance and conformance guidelines.

Annex A.
The IDL module for the coarse-grained modeling guidelines specification. This annex is normative.

1.4 Document Conventions

A few conventions are followed in this document to make the reader aware of the purpose of the text. While most of the document is normative, paragraphs succinctly stating mandatory requirements to be met by a management system (managing and/or managed) are preceded by a boldface “R” enclosed in parentheses, followed by a short name indicating the subject of the requirement, and a number. For example:

(R) EXAMPLE-1
An example mandatory requirement.

Requirements that may be optionally implemented by a management system are preceded by an “O” instead of an “R.” For example:

(O) OPTION-1
An example optional requirement.

The requirement statements are used to create compliance and conformance profiles.

Many examples of CORBA IDL are included in this document, and IDL specifying the TMN specific services, and supporting data types, included in a normative annex. The IDL is written in a 9-point courier typeface:

// Example IDL

interface foo {

void operation1 ();

};

1.5 Compiling the IDL

An advantage of using IDL to specify network management interfaces is that IDL can be “compiled” into programming code by tools that accompany an ORB. This actually automates the development of some of the code necessary to enable network management applications to interoperate. This document has an annex that contains code that implementers will want to extract and compile. Annex A is normative and should be used by developers implementing systems that conform to this standard. The IDL in this document has been checked with two compilers to ensure its correctness. A compiler supporting the CORBA version specified in ITU-T Recommendation Q.816 must be used.

The appendices have been formatted to make it simple to cut and paste them into plain text files that may then be compiled. Below are tips on how to do this.

1. Cutting and pasting seems to work better from the Microsoft® Word® version of this document. Cutting and pasting from the Adobe® Acrobat® file format seems to include page headers and footers, which cannot be compiled.

2. All of Annex A, beginning with the line “/* This IDL code…” through the end should be stored in a file named “itut_x780a1.idl” in a directory where it will be found by the IDL compiler.

3. The headings embedded in the annex need not be removed. They have been encapsulated in IDL comments and will be ignored by the compiler.

4. Comments that begin with the special sequence “/**” are recognized by compilers that convert IDL to HTML. These comments often have special formatting instructions for these compilers. Those that will be working with the IDL may want to generate HTML as the resulting HTML files have links that make for quick navigation through the files.

5. The annex has been formatted with tab spaces at 8-space intervals and hard line feeds that should enable almost any text editor to work with the text.

1.6 Updates

This section describes the updates from the previous version of the document and will be deleted prior to publication of this Recommendation.

2 References

NOTE -- This section was merely copied over from X.780 and needs to be updated for use in this amendment.

2.1 Normative References

The following ITU-T Recommendations and other references contain provisions which, through reference in this text, constitute provisions of this Recommendation. At the time of publication, the editions indicated were valid. All Recommendations and other references are subject to revision; all users of this Recommendation are therefore encouraged to investigate the possibility of applying the most recent edition of the Recommendations and other references listed below. A list of the currently valid ITU-T Recommendations is regularly published.

[1] ITU-T Recommendation Q.816, CORBA-Based TMN Services.
[2] The Object Management Group (OMG), “The Common Object Request Broker: Architecture and Specification”, OMG Document formal/99-10-07, Revision 2.3.1, October, 1999.

[3] The Object Management Group (OMG), “JIDM Interaction Translation,” Edition 4.31, OMG TC Document telecom/98-10-10, October 1998.

2.2 Additional References

The following standards contain information that was used in the development of these guidelines. As stated in the introduction, a primary design goal of these guidelines is to enable the re-use of existing network management information models, at least without significant semantic changes. These documents provide many of the details on the ITU-T’s CMIP framework, and therefore define some of the functionality the CORBA object modeling guidelines must support.

[4] ITU-T Recommendation X.703 (1997), Information Technology – Open Distributed Management Architecture, October, 1997.

[5] CCITT Recommendation X.720 (1992) | ISO/IEC 10165-1 : 1992, Information Technology – Open Systems Interconnections – Structure of Management Information: Management Information Model.

[6] CCITT Recommendation X.721 (1992) | ISO/IEC 10165-2 : 1992, Information Technology – Open Systems Interconnections – Structure of Management Information: Definition of Management Information.

[7] CCITT Recommendation X.722 (1992) | ISO/IEC 10165-4 : 1992, Information Technology – Open Systems Interconnections – Structure of Management Information: Guidelines for the Definitions of Managed Objects.

[8] ITU-T Recommendation X.720 Cor. 1, Corrigendum 1 to CCITT Recommendation X.720, February, 1994.

[9] ITU-T Recommendation X.721 Cor. 1, Corrigendum 1 to CCITT Recommendation X.721, February, 1994.

[10] ITU-T Recommendation X.721 Cor. 2, Corrigendum 2 to CCITT Recommendation X.721, October, 1996.

[11] ITU-T Recommendation X.721 Am. 1, Amendment 1 to CCITT Recommendation X.721, November, 1995.

[12] ITU-T Recommendation X.722 Cor. 1, Corrigendum 1 to CCITT Recommendation X.722, October, 1996.

[13] ITU-T Recommendation X.722 Cor. 2, Corrigendum 2 to CCITT Recommendation X.722, January, 2000.

[14] ITU-T Recommendation X.722 Am. 1, Amendment 1 to CCITT Recommendation X.722, November, 1995.

[15] ITU-T Recommendation X.722 Am. 2, Amendment 2 to CCITT Recommendation X.722, August, 1997.

[16] ITU-T Recommendation X.722 Am. 3, Amendment 3 to CCITT Recommendation X.722, August, 1997.

[17] CCITT Recommendation X.733 (1992) | ISO/IEC 10164-4 : 1992, Information Technology – Open Systems Interconnection – Systems Management: Alarm Reporting Function.
[18] ITU-T Recommendation M.3010 (2000), Principles for a Telecommunications management network, February, 2000.

[19] ITU-T Recommendation M.3120, CORBA-Based Generic Network Information Model.
[20] ITU-T Recommendation Q.821 (2000), Stage 2 and Stage 3 description for the Q3 interface - Alarm Surveillance,(to be published).
3 Definitions

NOTE -- This section was merely copied over from X.780 and needs to be updated for use in this amendment.

This section provides definitions for acronyms used throughout the rest of the document.

ASN.1
Abstract Syntax Notation #1.

ATM
Asynchronous Transfer Mode.

CMIP
Common Management Information Protocol.

CORBA
Common Object Request Broker Architecture.

COS
Common Object Services.

DN
Distinguished Name.

EMS
Element Management System.

GDMO
Guidelines for the Definition of Managed Objects.

GIOP
General Interoperability Protocol.

HTML
Hypertext Markup Language.

ID
Identifier.

IDL
Interface Definition Language.

IIOP
Internet Interoperability Protocol.

IOR
Interoperable Object Reference.

ITU-T
International Telecommunication Union – Telecom.

JIDM
Joint Inter-Domain Management.

MO
Managed Object.

NE
Network Element.

NMS
Network Management System.

OAM&P
Operations, Administration, Maintenance, and Provisioning.

ORB
Object Request Broker.

OID
Object Identifier.

OMG
Object Management Group.

OSI
Open Systems Interconnection.

PDU
Protocol Data Unit.

QoS
Quality of Service.

RDN
Relative Distinguished Name.

TMN
Telecommunications Management Network.

TTP
Trail Termination Point.

UID
Universal Identifier.

UML
Unified Modeling Language.

UTC
Universal Time Code.

4 Coarse-grained Interface Issues

This section identifies several issues that must be addressed by the framework as support for coarse-grained interfaces is added.

4.1 Reduced Number of IORs

As support for coarse-grained interfaces is added to the framework, the framework must enable the number of managed resources (like termination points) to grow without increasing the number of IORs exposed across the management interface.

4.2 Ability to Derive IORs

A lot of the early debate over the merits of coarse-grained interfaces focused on the need to reduce the number of IORs supported by a managed system. This was because throughout most of the 1990s Object Request Brokers (ORBs) offered system developers no standard way to persistently store the state of an object between method invocations. Thus, all objects with outstanding IORs had to be kept in memory, which limited the number of IORs a system could support. The OMG remedied this with the CORBA 2.2 specification, however, and most ORBs now support the OMG's Portable Object Adapter (POA) standard, which enables systems to persistently store object state between method invocations. Thus, the number of objects a managed system can now support is basically limited only by the number of objects it can store in its disk space.

This, however, does not negate all the benefits of coarse-grained interfaces. The benefactor, it turns out, will be mainly the managing system. When a managing system uses a fine-grained CORBA interface, in order to interact with each managed resource it must at some time retrieve the IOR for each managed resource. In a system with millions of managed resources, this amounts to millions of IORs. Managing systems will probably implement a range of strategies for dealing with large numbers of IORs. The simplest will be to just resolve a managed resource's name to its IOR before each interaction, but this is slow and wasteful of data communications network resources. An alternative will be to retrieve all names and their paired IORs once, and store them on the managing system. Another strategy will be to cache names and IORs on the managing system, keeping the most recently used IORs on hand for quick reference while discarding those not used for some time to be retrieved from the managed system when needed again. Other strategies could also emerge.

Coarse-grained interfaces have the potential to relieve managing systems from having to implement such schemes. Coarse-grained interfaces could enable a managing system to initially retrieve and store just a small number of IORs from a managed system. To make this work, though, a managing system must subsequently be able to tell from just a managed resource's name which of the previously-retrieved IORs to use to interact with that resource. That is, given a name, a managing system must be able to derive the IOR of the interface for that specific managed resource. If instead the managing system has to query the managed system with the name in order to discover the corresponding IOR, then the managing system is back to implementing the schemes described above and the benefit of adding support for coarse-grained interfaces to the framework is largely lost.

4.3 Application of Framework Services

Support for coarse-grained interfaces must be added to the framework in a way that enables the existing framework services (such as the Multiple Object Operation service and Terminator service) to be applied. This does not preclude changes to the implementations of those services to support coarse-grained interfaces.

4.4 Distinguishing Between the Two Types of Objects

It must be possible for a managing system to distinguish between resources managed with fine-grained and coarse-grained interfaces.

4.5 Coarse-grained Object Creation and Deletion

It must be possible to create and delete coarse-grained representations of managed resources. The possibility of including the create operation on the coarse-grained interface should be investigated.

4.6 Hierarchical Naming

Hierarchical (containment-based) naming of resources managed with coarse-grained interfaces must be supported.

4.7 Attributes

The framework must support associating attributes with managed resources accessed through a coarse-grained interface.

4.8 Migration of Modeled Entities across Approaches

The framework must enable implementations that can migrate access to a particular type of managed resource from the coarse-grained approach to the fine-grained approach, or vice versa.

4.9 Migration of Modeled Entities across Technologies

The framework must enable implementations to migrate to various software technologies, such as C++ or JavaBeans.

4.10 Notifications

The framework must support event notifications from managed resources accessed through coarse-grained interfaces.

4.11 Single Operation Multiple Entity Information Retrieval

The framework must support retrieving information from multiple managed resources of the same type with a single strongly-typed operation.

4.12 Equivalent Distinguished Names

The distinguished name of a managed resource must not depend on whether the resource is accessed with a fine-grained or coarse-grained interface. Also, it must be possible to retrieve containment relationship information from a single location regardless of whether the resources on the managed system are accessed with fine-grained or coarse-grained interfaces.

4.13 Coarse-grained Access to All Managed Resources

The framework must enable and require implementations to allow managing systems to access all managed resources through coarse-grained interfaces.

4.14 Exceptions

Coarse-grained interfaces shall enable managed resources to raise an exception on the invocation of an operation. These exceptions must be explicitly clarified for each operation.

4.15 Support for All Operations

A coarse-grained interface shall support all of the operations applicable to a managed resource.

4.16 Prescriptive Mapping

The mapping between fine-grained information models and coarse-grained information models shall be prescriptive. The same optimizations should be performed in both definitions. The mapping can be performed algorithmically.

4.17 Retrieval of Attributes from Multiple Objects

There is a need to retrieve attributes of multiple light object instances of the same type in a single operation. Since all of these objects would be accessed using the same façade, this can be accomplished with a single operation carried out by the façade.

4.18 Others

Editors' Note -- These requirements from the original contribution were not understood.

Meta requirements – introduction of new services that may delay any implementation of the framework forever; introducing new services using the coarse grained approach should not force all applications to support these services;

5 Framework and Requirements Overview

The previous section outlined the issues that must be resolved as support for coarse-grained interfaces is added the framework. This section and the rest of the document provide the details on how the framework will be extended to address these issues. Recommendation X.780 describes the aspects of the framework related to information modeling, so an Amendment to that document describes how coarse-grained interfaces will be modeled. First, a brief overview of the current framework is presented then an overview of the extensions.

5.1 Framework Overview

The framework for CORBA-based TMN interfaces is a collection of capabilities. A central piece of the framework is a set of CORBA Common Object Services. The framework defines their role in network management interfaces, and defines conventions for their use. The framework also defines support services that have not been standardized as CORBA Common Object Services, but are expected to be standard on network management interfaces conforming to the framework.

[image: image2.wmf]Superclasses:

Managed

Object

Managed

Object

Factory

Std.

Data

Types

GDMO

to IDL

Con-

ven-

tions

Managed

Element

Connection

Network

Link

Inherit

…

Managed

Element

Factory

Link

Factory

Network

Factory

Connection

Factory

…

Application-

specific Objects

Notification

Service

Telecom

Log Service

Notification

Specifications

Terminator

Service

Multiple Object

Operation Service

Naming

Service

Channel

Finder

Factory

Finder

Names

CORBA 2.3 ORB

Heartbeat

Service

Figure 1. Overview of Framework

The framework is depicted graphically in Figure 1 above. The figure shows the framework in gray. In the middle are the application-specific objects that are supported by the framework. Along the bottom is a box representing the CORBA ORB. Above that are a number of boxes with names in them representing the services that compose the framework. (Some also have icons depicting the databases they would have to maintain to perform their functions.) These services, along with ORB version requirements, are defined in Recommendation Q.816. Along the top of the figure are icons representing two superclasses, one for managed objects and one for managed object factories. Each of the managed objects and managed object factories supported by this framework must ultimately inherit from these superclasses, respectively. Also shown on the figure are icons of pages with up-turned corners representing standard object modeling conventions. These are defined in Recommendation X.780.

5.2 Coarse-grained Extensions Overview

This section provides an overview of the extensions to the framework required to support coarse-grained interfaces.

5.2.1 The Façade Design Pattern

The most significant change to the framework required to support coarse-grained interfaces is the way managed objects are accessed. The number of managed objects on a managed system must be able go up while the number of IORs supported by the system does. It is still desirable, though, that access to the managed objects remain strongly-typed. This leads to the use of a design pattern referred to here as the “façade” pattern. A façade can be thought of as a false front, or as a portal. Using the façade design pattern, a managed system will support a small number of façade interfaces, one for each type of managed object on the system. A managing system will then invoke an operation on a managed object by actually invoking the operation on the façade for that type of managed object on that system. In the façade design pattern, the managed objects do not have individual IORs, and hence cannot be directly accessed using CORBA.

When an operation is invoked on a managed object through a façade, the façade must then invoke the operation on the actual managed object or entity. Because many managed objects will be accessed through a single façade, the façade must know which managed object is the actual target of the operation. This will be handled by adopting the convention of including the name of the target managed object as the first parameter of every façade operation directed at a managed object.

While managed objects will no longer have unique IORs, they will still have unique names and can still be thought of as individual entities representing manageable resources. A managed object accessed through a façade will be referred to as a “light” managed object. Alternatively, those accessed directly with an IOR under the original framework approach will be referred to as “heavy” managed objects. (It may help to remember which is which by picturing light objects being light because they lack an IOR, while heavy objects are heavy because they have an IOR.)

5.2.2 Light Object Names

As mentioned above, light managed objects will have unique names, just as heavy managed object do. Also, light object names will be based on containment, just like heavy objects. In fact, light object names will differ only slightly from heavy object names. See Section X for the details on how light object names will differ from heavy managed object names. The similarity in names makes sense, though, because both light and heavy managed objects are managed objects. The only difference between them is the mechanism by which operations are invoked upon them.

5.2.3 Support Services for Light Objects

The framework support services for light objects will be quite similar to those used for heavy objects. Some, such as the Factory Finder and Channel Finder services require no change at all. Others, such as the Terminator and Multiple Object Operation (MOO) services require no changes to their interfaces or the way they are used by managing systems, but may require slight changes to their implementations if they access managed objects using the managed objects’ CORBA interfaces (rather than some implementation-specific method). Section X provides details on the framework support service changes required to support coarse-grained interfaces.

The biggest change to the support services comes in the area of support for naming. The façade interfaces are bound to names in the naming service, much the same way the support service interfaces are. The light object names, however, are not bound to IORs in the CORBA Naming Service like heavy objects are. Instead, a new service is introduced as a place to store light object names and ensure the accuracy of containment relationships. This new service, the Containment Service, is defined in Recommendation Q.816 Amendment 1.

5.2.4 Light Object Modeling

To support the façade design pattern, a new managed object interface is introduced. This interface will be known as the Managed Object Façade interface. It plays the same role in coarse-grained interfaces as the Managed Object interface does in fine-grained interfaces. That is, it is the base interface from which all managed object façade interfaces must either directly or indirectly inherit to work with the framework. The Managed Object Façade interface is quite similar to the Managed Object interface used in the original framework. See Section X for the definition of the Managed Object Façade interface.

6 Coarse-grained CORBA Modeling Guidelines

7 Guidelines for Translating Fine-grained Models to Coarse-Grained

An IDL information model developed to fit with the existing framework can be modified to follow the façade design pattern by making the following changes:

1. Managed Object interfaces that currently inherit from the ManagedObject interface must instead inherit from the ManagedObjectF interface.

2. Managed Object interfaces that do not inherit from the ManagedObject interface must inherit from the façade interface translated from the superclass’s interface. This means all superclasses of a translated managed object interface also have to be translated.

3. An in parameter of type NameType and named name must be added to each method. This parameter will be used to pass in the name of the light object on which the method should be invoked.

4. Managed Object Factory interfaces must instead inherit from the ManagedObjectfactoryF interface.

5. The light object creation methods on factories return…?

6. If the light object names do not uniquely identify the object's façade, the kind field values in name binding modules must be made unique for each subordinate class. That is, if there are name bindings for, say, the Equipment and EquipmentHolder classes that have the same value in the kind fields, they would have to be modified so that a value is used for one class only. Multiple values can be used for one class, as long as there is a name binding for each kind value in the local root naming context. Multiple classes cannot share a value, though. Thus, the name space must be divided along class boundaries. (It can be further divided within a class.)

7. Any attributes or operations that use object references instead of names must be changed to use names.

8 Compliance and Conformance

NOTE -- This section was merely copied over from X.780 and needs to be updated for use in this amendment.

This section defines the criteria that must be met by other standards documents claiming compliance to these guidelines and the functions that must be implemented by systems claiming conformance to this specification.

8.1 Standards Document Compliance

Any specification claiming compliance with these guidelines shall:

1. Derive (directly or indirectly) all interfaces that model resources from the ManagedObject interface described in Section Error! Reference source not found. and defined in the CORBA IDL in Annex A.

2. Define, for each managed object class that can be instantiated, a factory interface derived (directly or indirectly) from the ManagedObjectFactory interface described in Section Error! Reference source not found. and defined in the CORBA IDL in Annex A.

3. Use the constants defined in the CORBA IDL in Annex B whenever appropriate.

4. Use the notifications described in Section Error! Reference source not found. and defined in the CORBA IDL in Annex A whenever appropriate.

5. Adhere to the conventions for defining CORBA TMN managed objects specified in Section Error! Reference source not found..

6. Adhere to the IDL conventions specified in Section Error! Reference source not found.
7. Specify notifications as methods on a “Notifications” interface if none of the notifications defined in this document are applicable.

8. Define and use a NO<package name> exception for identifying the attributes and actions that are parts of a conditional package.

9. Use the macros defined in this document for identifying the notifications that are to be supported by a managed object.

10. Use the definitions for generic attribute types found in Section Error! Reference source not found. wherever applicable.

11. Define IDL name binding modules to identify allowable containment relationships.

12. State in its compliance clause a reference to the module(s) from which other generic attributes are used.

13. Follow the GDMO to IDL mapping rules defined in Section Error! Reference source not found. if the IDL model is a translation from GDMO.

8.2 System Conformance

An implementation claiming conformance to this document shall:

1. Support all of the capabilities of the ManagedObject interface described in Section Error! Reference source not found.
2. Support the create operation behavior described in Section Error! Reference source not found..

8.3 Conformance Statement Guidelines

The users of these guidelines must be careful when writing conformance statements. Because IDL modules are being used as name spaces, they may, as allowed by OMG IDL rules, be split across files. Thus, when a module is extended its name won’t change. Instead, a new IDL file will simply be added. Simply stating the name of a module in a conformance statement, therefore, will not suffice to identify a set of IDL interfaces. The conformance statement must identify a document and year of publication to make sure the right version of IDL is identified.

Annex A Coarse-grained Modeling IDL

(Normative)

/* This IDL code is intended to be stored in a file named "itut_x780a1.idl"

located in the search path used by IDL compilers on your system. */

#ifndef ITUT_X780A1_IDL

#define ITUT_X780A1_IDL

#include <itut_x780.idl>

#pragma prefix "itu.int"

module itut_x780a1 {

// IMPORTED TYPES

// Types imported from itut_x780

typedef itut_x780::DeletePolicyType DeletePolicyType;

typedef itut_x780::ManagedObjectValueType ManagedObjectValueType;

typedef itut_x780::NameType NameType;

typedef itut_x780::NameSetType NameSetType;

typedef itut_x780::ObjectClassType ObjectClassType;

typedef itut_x780::SourceIndicatorType SourceIndicatorType;

typedef itut_x780::StringSetType StringSetType;

// Exceptions imported from itut_x780 (exceptions can’t be typedeffed)

#define ApplicationError itut_x780::ApplicationError

#define CreateError itut_x780::CreateError

#define DeleteError itut_x780::DeleteError

// DATA TYPES

struct AttributesGetResult {

ManagedObjectValueType
attributes,

StringSetType

attributeNames };

typedef sequence <AttributesGetResult> AttributesGetResultSet;

void attributesBulkGet (

in
NameSetType

names,

in
StringSetType

attributeNames,

in
unsigned long

howMany,

out
AttributesGetResultSet

attributes,

out
AttributesGetResultIterator
iterator)

raises (ApplicationError);

// ATTRIBUTES GET RESULT ITERATOR INTERFACE

/** The Attributes Get Result Iterator interface is used to retrieve

the results from a attributesBulkGet operation using the iterator

design pattern. */

interface AttributesGetResultIterator {

/** This method is used to retrieve the next "howMany" results

in the result set.

@param howMany
The maximum number of items to be returned in

the results. Fewer may be returned if that is

all that is left, or to balance delay

with efficiency.

@param results
The next batch of results.

@return

True if there are more results after those

being returned. If the return value is true

the results set should not be empty, as this

forces the client to poll for results.

Instead the call should block.

*/

boolean getNext(in unsigned short howMany,

out AttributesGetResultSet results)

raises (ApplicationError);

/** This method is used to destroy the iterator and release its

resources. The iterator, though, is automatically destroyed

after the last results are returned, and may be destroyed if

unused for an unreasonably long period. */

void destroy();

}; // end of interface AttributesGetResultIterator

// MANAGED OBJECT FACADE

/** The Managed Object facade is intended to be the base interface

from which all other managed object facades inherit. It is a

central place to specify basic functions which all managed object

facades are expected to support. */

interface ManagedObjectF {

/** This method returns the scoped name of the most-specific

class of the object (e.g. “EquipmentR1”).

@param name
The name of the light object instance on

which the operation is to be invoked.

@return
The interface name of the light object's facade.

*/

ObjectClassType objectClassGet(in NameType name)

raises (ApplicationError);

/** This method returns a list of all the conditional packages

supported by this instance.

@param name
The name of the light object instance on

which the operation is to be invoked.

@return The list of package names suported by the light object

*/

StringSetType packagesGet (in NameType name)

raises (ApplicationError);

/** This method returns an indication of how the object was

created.

@param name
The name of the light object instance on

which the operation is to be invoked.

@return
An indication of whether the named light object was

created autonomously or by a managing system

*/

SourceIndicatorType creationSourceGet(in Nametype name)

raises (ApplicationError);

/** This method returns a value indicating if the object may be

deleted and if it may, if all contained objects are

automatically deleted.

@param name
The name of the light object instance on

which the operation is to be invoked.

@return The delete policy of the named light object

*/

DeletePolicyType deletePolicyGet (in NameType name)

raises (ApplicationError);

/** This method may be used to generically get all of the

attributes supported by an instance. Each interface is

expected to sub-class the Managed Object value type and add the

other attributes supported by that interface. The managed

object must return a value object of that type. The client

must then narrow the reference to access all the attributes.

<p>

The client may also submit a list of names indicating the

attributes it wishes to receive. These names must match the

member names in the value object. For members not on the list,

and for members that are part of packages that are not

supported, the server may return any value but it should be as

short as possible. The server also returns the list of

attributes, which may be shorter due to exclusion of attributes

in unsupported packages. The client must regard the value of

any member not in the list as garbage. <p>

A null attribute names list indicates that all supported

attributes are to be returned. The server must return the

actual list.

@param name
The name of the light object instance on

which the operation is to be invoked.

@param attributeNames
A list of names of attribute to be

retrieved.

@return The value type containing the attriubtes.

*/

ManagedObjectValueType attributesGet (

in
NameType name,

inout
StringSetType attributeNames)

raises (ApplicationError);

/** This method is used to return multiple attributes from

multiple light objects of the same type. The client supplies

a list of attribute names, and a list of managed object names

from which to retrieve the attributes. <p>

Data is returned in strongly-typed managed object value types,

one from each managed object named. If the façade does not

provide access for a managed object name provided by the

client, no value type for that object is returned. <p>

Even if the client does not request that values for the 'name'

attribute be returned, the façade shall return the name in each

managed object value type. If it does not, the client won't

know which values apply to which light object instance. <p>

Along with each managed object value type returned is a list of

the names of the attributes in that value type that have valid

values. This list may not match the list of requested

attributes as the instance may not support all of the

requested attributes. If the instance supports none of the

requested attributes the façade shall return a managed object

value type for that instance with only the name attribute

containing a valid value. <p>

Since a potentially large amount of data may be returned, the

iterator design pattern is used. The client specifies the

maximum number of value types to be returned. The rest must be

returned in an iterator. If an iterator is used, the return

value shall be true. Otherwise, it shall be false and the

iterator reference shall be null.

@param names
The names of the light managed objects from

which to retrieve the attribute values.

@param attributeNames
The names of the attributes to

retrieve.

@param howMany
The maximum number of value types to return

in the attributes parameter.

@param attributes
The first batch of results.

@param iterator
A reference to an iterator, if needed.

Otherwise, null.

@return True if an iterator is being returned, otherwise false.

*/

boolean attributesBulkGet (

in
NameSetType

names,

in
StringSetType

attributeNames,

in
unsigned short

howMany,

out
AttributesGetResultList

attributes,

out
AttributesGetResultIterator
iterator)

raises (ApplicationError);

/** This method destroys the object. It is used to simply

release any resources associated with the managed object. It

does not check for contained objects or remove name bindings

from the naming tree. <p>

The intent of this operation is to allow support services to

destroy the managed object. <p>

NOTE: Direct invocation of this operation from a managing

system could corrupt the naming tree and is recommended only

under extraordinary circumstances. Clients wishing to delete

an object should instead use the terminator service.

@param name
The name of the light object instance on

which the operation is to be invoked.

*/

void destroy(in NameType name)

raises (ApplicationError, DeleteError);

}; // end of ManagedObjectF interface

// MANAGED OBJECT FACTORY FACADE

/** This interface defines the generic managed object factory

facade. All Managed Object factory facades should inherit from this

interface. <p>

In addition to providing the means for creating objects by management

operation, the factories are assumed to take responsibility for

maintaining the integrity of the naming tree by creating name bindings

for the objects they create. <p>

Currently, this interface is null. It is included, however, as a

placeholder for capabilities that must be supported by all managed

object factories.

*/

interface ManagedObjectFactoryF {

}; // end of ManagedObjectFactoryF interface

}; // end of module itut_x780a1

#endif // end of #ifndef ITUT_X780A1_IDL

	*Contact:
	Keith Allen

SBC Technology Resources

USA

Tel: +1 512 372 5741

Fax: +1 512 372 5791

E-mail: kallen@tri.sbc.com
	Lakshmi Raman

Teraburst Technologies

USA

Tel: +1 408 541 1155 x322

Fax: +1 408 541 0439

E-mail: lraman@teraburst.com

M:\SG_DOC\SG4\JAN01\TDs\GEN\86.doc
12/01/01
M:\SG_DOC\SG4\JAN01\TDs\GEN\86.doc

12/01/01

_1040132634.doc

Superclasses:

Managed Object

Managed Object Factory

Std. Data Types

GDMO to IDL

Con-

ven-

tions

Managed Element

Connection

Network

Link

Inherit

…

Managed Element Factory

Link

Factory

Network

Factory

Connection

Factory

…

Application-specific Objects

Notification

Service

Telecom Log Service

Notification Specifications

Terminator

Service

Multiple Object Operation Service

Naming

Service

Channel Finder

Factory Finder

Names

CORBA 2.3 ORB

Heartbeat Service

